
Jeff Kramer

Imperial College London

Adventures in Adaptation:
a software engineering playground! …. the challenge of change …

to automate and run on-line what is
currently off-line!

Adaptive and Self-Managed Systems

…. the challenge of change …

to automate and run on-line what is
currently off-line!

Adaptive and Self-Managed Systems Adaptive and Self-Managed Systems

Adaptive full fat :
changes in functionality and
performance in response to
changes in the environment
and/or goals

Adaptive light :
adjustment of runtime
parameters in response to
degraded performance or
failure

Adaptive and Self-Managed Systems a software engineers’ playground

three layer architecture

ICSE FOSE ’07

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

why this architecture?

how did we get here?

where are we going??

MAPE cycle

a single feedback loop?

response times?

complexity?

Monitor

Analyse Plan

Execute

sensors effectors

1998 (Gat)

Sense Plan Act

1. Planning

2. plan execution

3. component feedback control

Deliberator

Sequencer

Controller

layering according to response times

1970’s

inspiration from robotics

three layer architecture

ICSE FOSE ’07
a separation of concerns

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

BU : increasing response time

TD : decreasing statefullness and strategic planning

… some earlier research adventures …

CONIC and Darwin

 distributable, context-
independent components

 interaction via a well-
defined interface

Component

Composite Component

dynamic change?

provided required

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

an explicit configuration
description (ADL)

 third party instantiation
and binding

CONIC and Darwin

 on-line dynamic change

 once installed, the
software could be
dynamically modified
without stopping the
entire system

Composite Component

TSE 1985, TSE 1989, ESEC/FSE 1995, FSE 1996

on-line dynamic change

How can we do this safely?

 load component type

 create/delete component instances

 bind/unbind component services

T

a:T

a
b

TSE 1985

How can we maintain configuration consistency
and behaviour consistency

during the change?

evolved structural
 specification

change
script

system

Compile,
build and

deploy

evolved system

change
script

TSE 1985

structural
 specification

configuration consistency

preserve consistency

behaviour consistency

Separate the
specification of
structural change

from the
component
application
behaviour.

The image
cannot be
displayed. PASSIVE ACTIVE

bind

unbind

activate
create

delete
passivate

Component
States

Passive component services
interactions, but does not initiate

new ones i.e. acts to preserve
consistency.

Quiescent : passive and
no transactions will be

initiated on it (ie.
environment is passive)TSE 1990

General
change model:

safe configuration and
reconfiguration of components

No components? use objects and dependency injection

(inversion of control) for 3rd party instantiation and binding!

three layer architecture

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

Safe operation, including during
change (quiescence)

ICSE FOSE ’07, SAVCBS 2007, SEAMS 2008

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

ICSE FOSE ’07, SAVCBS 2007, SEAMS 2008

three layer architecture

component assembly?
plan execution?

plan execution

...
AT.loc1 && !LOADED

 -> pickup
AT.loc1 && LOADED

 -> moveto.loc2
AT.loc2 && LOADED

 -> putdown
AT.loc2 && !LOADED

 -> moveto.loc1
...

condition-action rules
over an alphabet of plan
actions

Includes alternative paths to the
goals if there are unpredicted
environment changes

Reactive plans

plan execution component assembly

Derive configurations by mapping plan
actions to components :

primitive plan actions (pickup, moveto,…)
are associated with the provided services
of components which the plan
interpreter can call

elaborate and assemble components using
dependencies (required services)

Mapping is a many to many relationship, providing alternatives

GoToTask

Motors Location

moveto

GoToTask

Motors Location

moveto(t)

Repository

Hardware

Motors

SkyCamera

Location

SLAM

Location

Camera
Already

instantiated

Webcam
Camera

Unavailable,
network failure

X

component assembly adaptation demonstration

Adaptation
may require
component
reselection
or
alternative
plan selection
or
replanning

Flashmob - distributed adaptive self-assembly

gossip algorithm

Exploiting NF preferences in architectural
adaptation for self-managed systems

component annotations and utility function
optimisation

SEAMS 2011, SAC 2010

… other assembly adventures …

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

Decentralised component selection and
assembly by transitive closure on

components satisfying plan actions

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

model-based
planning

goal

build a model

synthesise a plan

…earlier modelling adventures…

... model check properties using LTSA

 model component behaviour as LTS in FSP
 compose behaviours according to the

software architecture configuration

ICSE ’96, TOSEM ’96, FSE ’97, ESEC/FSE ’99, book ’99/2006

plan (controller) synthesis

Consider a plan as a winning strategy in an infinite two player game
between the environment E and the system x with interface I
such that goal G is always satisfied no matter what the order of
inputs from environment.

Goal G: Linear Temporal Logic property

Environment

|| composition
of LTS

E System

synthesise x

xcontrols

inputs

interface I

Symbolic Controller Synthesis for Discrete and Timed Systems, Asarin, Maler & Pnueli, LNCS 999, 1995.

ltl_property SAFE4 =
 [](closeGripper -> ALIGNED)
ltl_property GETBALL =
 [](alignBall -> X closeGripper)
ltl_property PROGRESS =
 [](openGripper -> X alignBall)

controller:-
 !ALIGNED && !GRIPOPEN && !PICKEDUP
 -> openGripper

 !ALIGNED && GRIPOPEN && !PICKEDUP
 -> alignBall

 !ALIGNED && !GRIPOPEN && PICKEDUP
 -> discardBall

 ALIGNED && GRIPOPEN && !PICKEDUP
 -> closeGripper

Environment model (as || LTS)

plan (controller) synthesis

Goal specification (as LTL properties)
Plan (as a controller)

computing “winning” states

 By backward propagation of error state
for inputs:

input control control
-1 -1

… for controls:

input control control
-1 -1 X

-1
control

-1
input

-1
input

-1
control

-1
input

-1
input

X

plan extraction

Reactive Plan computed from set of control states S
(has outgoing transition labelled with control)

input

s

s
{fluents}

{fluents}

control

control

controller:-
 !ALIGNED && !GRIPOPEN && !PICKEDUP
 -> openGripper

 !ALIGNED && GRIPOPEN && !PICKEDUP
 -> alignBall

 !ALIGNED && !GRIPOPEN && PICKEDUP
 -> discardBall

 ALIGNED && GRIPOPEN && !PICKEDUP
 -> closeGripper

Label states with fluent values
Fluents form the preconditions

for the control actions.

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

Plan synthesis based on an
environment model and goals

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

three layer architecture realisation

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

assembler

plan interpreter

Backbone interpreter
+ tranquility

domain model

goal planning
LTSA

three layer architecture realisation

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

experience?

… mostly …
ICSE 2013 teaser demo

provided basis for further research … !
Multi-tier adaptation

realistic
weak assumptions  
and guarantees

idealised
strong assumptions  
and guarantees

Degraded
Service

Enhanced
Service

ICSE, 2014 : Hope for the best, plan for the worst…!

0 0 0

j j j

n n n

ICSE FOSE ’07, SEAMS 2008, SEAMS 2011

1. Planning
over abstract
domain

2. Precomputed
plans:
component
assembly and
plan execution

3. Component
execution and
dynamic
configuration

three layer architecture

2. Precomputed
plans:

generating revised plans

ICSE 2013

domain model

goal planning

inference

log

execution
traces

model
updates

system
designer

Plan revision
through domain
model revision
using observations
and probabilistic
rule learning

Learning through
experience!

Backbone interpreter

Inference

log

Goal Model
(System state +
System Goals +

Environment
Assumptions)

Knowledge
Repository

elaborate the three layer architecture

our current vision

Provide a reference architecture which …

accommodates specific research aspects more clearly

facilitates comparison of specific approaches

provides a pick-and-mix (plug-and-play) architecture

… an adventure playground
for software engineers!

Rainbow

resolves the
abstraction gap

between system and
architecture

Inference

log

Goal Model
(System state +
System Goals +

Environment
Assumptions)

Knowledge
Repository

eventsstatus

Component
Architecture

 commands

Strategy Enactor

St
ra

te
gy

 E
na

ct
m

en
t

Logging Infrastructure

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

elaborating the three layer architecture Plasma

separate application and
reconfiguration planners

Plasma

separate application and
reconfiguration planners

Behaviour Problem SolverReconfiguration Problem
Solver

Negotiation

eventsstatus

Component Architecture

reconfiguration
 commands

behaviour
commands

Behaviour
Strategy Enactor

Reconfiguration 
Strategy Enactor ok/nok

Strategy Strategy

Negotiation

Behaviour
Problem Solver

Goal Model
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model
(System state +
System Goals +

Environment
Assumptions)

G
oa

l
M

an
ag

em
en

t
St

ra
te

gy

M
an

ag
em

en
t

St
ra

te
gy

 E

na
ct

m
en

t

Logging Infrastructure

K
no

w
le

dg
e

R
ep

os
ito

ry

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

MORPH
architecture

in conclusion ...

…. the challenge of change …

to automate and run on-line what is
currently off-line!

Adaptive and Self-Managed Systems

the challenge of change

model revision in response to updates and change in the
environment

online Requirements Engineering in response to updates
and changes in goals (RE@runtime)

ASE 2008, ICSE 2009, ICSE 2012, CACM 2015

 automated support for diagnosis and
repair using a combination of model
checking and machine learning

automated support for requirements
elaboration and obstacle analysis

Vision: architectural reference model

 identify and accommodate specific research concerns,
 facilitate comparisons between approaches, and
 provide a framework for potential implementations

 (plug-and-play)

… an adventure
playground for
software engineers!

Behaviour
Problem Solver

Goal Model
Manager

events

Inference

status

Component Architecture

reconfiguration
commands

Reconfiguration
Problem Solver problem

strategy

strategy

problem

behaviour
commands

Behaviour
Strategy Enactor

exception

Reconfiguration 
Strategy Enactor reconfigure

strategy strategyexception

log

Behaviour  
Strategy Manager

Reconfiguration
Strategy Manager

strategies
exception

strategies
exception

configuration
negotiation

Goal Model
(System state +
System Goals +

Environment
Assumptions)

G
oa

l
M

an
ag

em
en

t
St

ra
te

gy

M
an

ag
em

en
t

St
ra

te
gy

 E

na
ct

m
en

t

Logging Infrastructure

K
no

w
le

dg
e

R
ep

os
ito

ry

Effectors Probes

Ta
rg

et

Sy
st

em

Resource
Discovery

SEAMS’08

SEAMS’08

SEAMS’08

SEAMS’08 SEAMS’08SEAMS’08

SEAMS’11 TOSEM’13

ICSE’14

ICSE’14 ICSE’13b

ICSE’13 ICSE’13

ICSE’13

ICSE’13b

ICSE’13b

FM’12

ICSE’11

ICSE’14

MORPH
architecture

challenging case
studies

evaluation!
validation!
comparison

collaborative teams

multidisciplinary

Daniel Sykes

Alessandra Russo

Will Heaven

Jeff Magee Sebastian Uchitel

Nicholas D’Ippolito

Victor Braberman

Katsumi Inoue
Andrew McVeigh

Dominico Corapi

Dalal Alrajeh

Axel van
Lamsweerde

international cooperation and …

competition!

ac
kn

ow
le

dg
em

en
t

SEAMS

a software
engineering
adventure

playground!

Bliss

